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ABSTRACT Q.. \ (.5(}()/

The use of the first and second adiabatic inveriants of
charged particle motion in calculating the trajectories of
particles drifting in combined magnetic and electric fields is
discussed. Such calculations become particularly gimple for a
dipole magnetic field if the magnetic lines of force are

electric equipotentials.



Introduction

The second, or integral invariant of charged particle
motion in a magnetic field with mirror-geometry has found wide
use in studies of natural and artificial radiation belts around
the earth. It has provided an indispensable tool for orgenizing
the measurements of trapped particles by rockets and earth
satellites and even for correlating such measurements with ground-
based and balloon observations of various phenomena associated
with precipitation of particles from the radiation belts. The
integral invariant is useful in this important application,
however, only in dealing with particles whose kinetic energy is
great enough that their drift motions consist solely or largely
of magnetic (gradient and line curvature) drifts, with electric
fields producing negligible drift motions. Knowledge of the
electric fields in the magnetosphere is incompiete. However,
there are, for example, those fields which drive the Sq and Ds
current systems and these appear large enough to limit simple
ordering of trapped particle measurements to particles with
kinetic energy greater than 30 or 40 keV.

The existence of an integral invariant is not limited to
situations in which particle drift motions consist solely of

megnetic drifts but applies more generally to situations in



which electric fields influence the particle motion. Northrop
and Teller [1960] show that in the general case where electric
fields (both conservative and non-conservative) act upon
particles in a magnetic field, the guiding center motion of the
particles will be such as to conserve the particles' magnetic
moment, integral invariant, and total (kinetic plus potential)
energy .

This paper examines the use of these conservation laws
to determine the paths of charged particles through combired
magnetic and electric fields, applying them specifically
(as an example) to the determination of particle motions in the
inner portions of the earth's magnetosphere where the magnetic
field approximates that of a dipole. The electric field is
assumed, in this example, to consist of that caused by the
earth's rotation plus that caused by the solar daily tidal

action in the ionosphere.

The Integral Invariant in a Dipole
Magnetic Field Whose Lines of Force
are Electric Eguipotentials

The integral invariant, J, of particle motion is:

J = §p' ds =§ VEmW" ds (1)
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With conservation of a particle's magnetic moment, M = %—,
m



and with the assumption that megnetic lines of force are

electric equipotentials, equation (1) can be written:
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In equations (1) and (2)

L

bas

v

component of a particle's momentum parallel
to magretic line of force

particle mass

particle's kinetic energy with W, and W,
referring to the amounts of kinetic energy
associated with the particle's velocity
components perpendicular and parallel to
the magnetic line of force ’

magnetic field strength

magnetic field strength at which the particle
will mirror

integral along a line of force between two
successive mirrorings of a particle

The term 4 B has been removed from the integral sign because

m

a particle's kinetic energy and thus its mirror point (Bm) will

not change in a single bounce along a line of force (assumed an

equipotential).

In the complete absence of significant electric fields,

a particle's kinetic energy (and thus Bm) remains constant not

Just over a single bounce period, but over any number of bounce

periods.

In that event the particle's drift takes place along



the surface on which the quantity, f (x - B/Bm)l/ 2 3s is
constant; this is the basis of the parameter, L, defined by
McTlwvain [1961] and used so successfully to organize measurements
of high-energy trapped particles. However, in the presence of
significant electric fields, W (and therefore Bm) will change
&s the particle moves from line to line, and the particle's

drift will then be along the surface on which

J V‘“‘» =\, j( -38)"2a ()

is constant.

Figure 1 depicts the lines of force and contours of
constant field strength in a dipole magnetic field representing
that of the earth. Also indicated are contours of constent J',
labelled with their values in units of (earth radii) x (gauss)l/ 2,
If a particle gains or loses kinetic energy as it moves through
the field, its mirror point will move inward or outward,
respectively, along the surface of constant J' which contains
its initial mirror point.

If the particle initially mirrors in the equatorial
plane, J' = 0 and the particle must continue to mirror in the

Aequa.toria.l plane. In this case, the particle's kinetic energy



is simply related to its radial distance, r, from the dipole

and to its initial kinetic energy and radial position:
W= W (BB ) = W (/e = W (/1. @
o n o o )

Here the subscript, o, indicates initial values, and the radial
position, r, has been replaced by L, the equatorial redius (in
earth radii) of the line of force on which the particle is

located.

In a conservative electric field derived from a pontential,

V, the total energy of a drifting particle, K = W + eV (e repre-
sents the particle's charge) is constant. If the potential,
V=V (L #), is known as a function of L and ¢ (§ = the
longitude messured from a2 suitable reference line such as the
earth-sun line), the particle's location, L = L (@), is simply

obtained by rewriting (4) as:

e (v, -V) -1/3

= | 1+ —s— . (5)
Wo

ot"'l.“

When the particle does not mirror initially in the
equatorial plane of the dipole, the relation w/wo =B m/13 9

expressing conservation of the magnetic moment still applies



but it no longer provides the obvious simple relation

(i.e., W< (1/1.)3) between W and L that was found in
equation (4). One can, of course, refer to Figure 1 to
determine how B (and thus, W) vary with L as a particle
moves along a constant J surface. However, we shall see
that this is not necessary because a simple empirical relation-
ship between Qm and L still applies for particles mirroring
outside the equatorial plane.

To show what relationship does hold between W (or Bm)
and L with conservatior of M and J' in a dipole field,
there is plotted, in Figure 2, the ratio (B (L)/B_ (10) yH/3
versus the ratio (10/L) using correspondinrg values of
B, (L) and L picked along curves of constant J' in Figure 1.
The individual points are not shown, but they were found to lie
quite precisely along the straight lines shown in the log-log
plot. The line for J' = 0 has, of course, unit slope in this
representation. The slopes of the other lines are less than one
and decreese with increasing J', showing that Bm for particles
mirroring at large angles above and below the equator varies
less strongly with I than it does for particles mirroring

near the eguator. The slope, S, of each line in Figure 2 is:

s = log (3, (1)/B, (10) )/ / log (10/L) (6)



and it is easily shown from this that, in general,

38
Bma/me = (1/1,) (7
where a and b refer to two different lines of force identified
by their equatorial radii La and Lb' The parameter, S, is a
function only of J', and,thus, is a constant, as is J',
determined by the initial conditions of the particles'

motion.

Figure 3 shows values of the exponent, y = 3S plotted
against J'. It is noted that y s&approaches the value 3 for
very small J' and appears to approach the value 2 for very
large J'. 1Indeed, 7 should approach 2 for very large J°
because, ir that limit, when Bm >> Beq’ the integral
§ (1- B/Bm)l/2 ds becomes proportional to L and then, to
keep J' constant with varying L, Bm must become proportional

*
to L?. The curve of Figure 3, together with knowledge of the

*I wish to thank Mr. Harold E. Taylor for pointing out the logic
of the lower limiting value, 2, of the exponent, 9. Axford and
Hines [1961] reached an analogous conclusion by considering the
process of energization of low-energy particles to be one of
adiabatic compressiocn of tubes of force.
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initial mirror point (and, thus, the value, J') for a particle,
permits one to use equation (5) in the following form to trace
a particle's path:

-1/

(8)

i
pd
+

L o .
L W

It is clear from equation (8) that particles, initially
in a single tube of force, will generally follow different
paths, the path of each particle depending upon its initial
kinetic energy and mirror point in the tube of force.

In summary, then, equation (8) enables one to determine
the path of a drifting particle (thet is, L versus §) in a dipole
magnetic field (in which the lines of force are equipotentials)
when the charge of the particle, its initial kinetic energy, and
initial mirror point are known and vhen the distribution of
electric potential among the field lines is stated. When the
drift path of the particle is thus established, B (and thus the
kinetic energy) at each point is known, since B m/Bm = (LO/L)y,
and the mirror altitude is determined from the mirrgr field

strength Bm.



Illustration of Use of Foregoing
Results

Maeda [1564] presents the world-wide distribution of the
electrostatic field in the E-region (as deduced from geomagnetic

data) in potential form as follows:

V(2,6,8) = a Z Z (Al:l1 cosm @ + B: sin m @) Pt: (cos @)
n m
(9)
where © = colatitude
$ = longitude (or local time in angular measure,
reckoned from midnight)
a = radius of éonospheric current sheet
(6.48 x 10° cm)
P: (cos 6)
= Schmidt's Functions [ see Chapman and Bartels,
1962] .

Maeda lists the values of the harmonic coefficients A and By
for quiet days. We have used his values in equation (9) to
compute V (a,0,f) for every five degrees of longitude, §,

and for values of @ corresponding to L-values from 1 Re to

10 R, in 0.2 R, increments. (L is related to @ by .
§in® © = 1/L.) This potential distribution, projected along

lines of force into the equatorial plane of the dipole field,



is sketched in Figure 4. One sees a relative high potential
near nidnight and a low potential near noon. Since the
E-region rotates with the earth (at least at low latitudes)

one must add the co-rotational electric field given by the

potentials
Mg Og 1
vV = Y (1 -'i) (volts) (10)
10" a
where ME = magnetic moment of earth

(8.1 x 1627 gauss-cm;)
wE = angular velocity of earth

a = radius of ionospheric current sheet.
This becomes
1 .
vV = 92 (1 - i) kilovolts.

The sum of the two potentials, projected into the equatorial
plane of the dipole field, is sketched in Figure 5.

To illustrate the use of the invariants of particle motion
in calculating particle drift paths, we have used equation (8),

together with the computed values of potential depicted in
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Figure 5 to calculate the path of a 1 keV electron initially
mirroring on the L = 3 line at midnight and an altitude of
160 km where B » 0.5 gauss. For this initial mirror point,
our calculations (from which the J' curves in Figure 1 were
sketched) show that J' = 4.0. Therefore, by Figure 3,

y » 2.2. Figure 5 shows that the potential of the initial
line is ~ 65 kV. (The precise value taken from the tables of
computed values is 65.288 kilovolts.) The determination of
the path consists simply in choosing various values of L
(i.e«, L = 2.8, 2.6, etc.) from those for which V was computed,
taking the ratio of each to L (which was 3.0) and solving for
the corresponding values of V. Then, since V is known,
for each L, as a function of @, one finds the longitude
(#) at which the particle crosses each L-shell.

These particular starting conditions were chosen in
corder to provide a comparison of our results with those of
Maeda who presented (his Figure 4) the kinetic energy variation
of a2 1 keV electron with very similar initial conditions
(initially mirroring at 120 km altitude on the L = 3.09 line
at midnight). Maeda's method of calculation involved a
numerical integration of the work done by the electric field
depicted in Figure 4 upon the drifting electron, presumably
as the rotatirg macnetospliere carried it through this potential

rattern.



1k

Figure 6 shows the kinetic energy versus local time as
calculated by Maeda (dashed curve) and by us (solid curve).
The two curves are quite similar. This is not suwrprising,
as they simply represent the results of doing the same calcula-
tion two different ways; this particular calculation has been
presented simply to illustrate the method described in the

foregoing sections.

Conclusions

Use can be made of the fact of conservation of the first
and second adiabatic invariants in determining paths of

particles, not only in a pure magnetic field, but also in

combined magnetic and electric fields. This becomes particularly

attractive when the magnetic lines of force are equipotentials
of the electric field, a situation which probably prevails
widely in the magnetosphere. If the magnetic field is that of
a dipole the tracing of particle paths becomes very simple
because the mirror field strength, Bm, and thus the kinetic
energy, W, depends explicitly upon L. The nature of this
dependence is a function only of the initial mirror position
of the particle and we have found that, to very good

approximation,



15

where 7y, determined empirically, rariges from 3.0 for particles
moving only in the equatorial plane (i.e., J' = 0) to ~ 2 for

particles mirroring at high latitudes (i.e., large J').
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FIGURE CAPTIONS

Figure 1. Dipole field of the earth, showing lines of force,
contours of constant field strength, and contours of
constant J'. Units of J' are (earth radii) x (gauss)l/a.
As a particle gains or loses kinetic energy its mirror
point moves inward or outward along a contour (i.e.,
surface) of constant J' and the kinetic energy varies
directly as the mirror field strength, B -

Figure 2. The ratio, (B (L)/B_ (10))Y/% piottea versus (10/L)
for various values of J'. B (10) is the mirror field
strength of a particle, having a given J', on the
L =10 line. B (L) is the mirror field strength of
a particle having the same J' but on another line L.
The units of J' are (earth-radii) x (gaussl/ 2).

Figure 3. The exponent, ¥ = 3S plotted against J'.
7 has the value 3 for J' = O (i.e., particles mirroring
in the equatorial plane) and approaches 2 for large
J' (i.e., particles mirroring at high latitudes).

Figure L. Potential distribution in equatorial plane of dipole
field as calculated from data of Maeda [196L].

Figure 5. Potential distribution in equatorial plane of dipole
field. The co-rotation potential is included.

Figure 6. Variation of kinetic energy of an electron with local
time. $Solid curve represents electron initially mirroring
with 1 keV kinetic energy at 160 km altitude on the L = 3
line at midnight; calculation done by methods described in
this paper. Dashed curve is taken from Figure 4 of Maeda
[1964] and applies to a 1 keV electron on L = 3.09 line.
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